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Abstract

3D Detection Transformer (3DETR) is a recent end-to-
end transformer architecture for 3D object detection in 3D
point clouds. In this work, we explore training and evalua-
tion of 3DETR in a label-efficient setting on the popular 3D
object detection benchmark SUN RGB-D. The performance
of 3DETR declines drastically with decreasing amount of
labeled data. Therefore, we investigate self-supervised pre-
training of the 3DETR encoder with the spatio-temporal
representation learning (STRL) framework. Opposite to our
expectations, we observe that straightforward application
of this framework leads to degraded representations which
in some cases can even impair learning of the downstream
task. To remedy this issue we extend STRL framework by
introducing an auxiliary loss, which is applied to interme-
diate transformer layers. Our experiments demonstrate that
this extension enables successful pre-training of 3DETR en-
coder and significantly boosts its label efficiency in the 3D
object detection task.

1. Introduction

3D object detection in point cloud data is a well studied
problem [3,6,16,17,19,20,26,27]. Most of the prior work
relies on carefully designed deep neural networks with 3D
domain-specific biases. Recent work 3DETR [15] proposes
a simple alternative based on end-to-end Transformer archi-
tecture and demonstrates that it can achieve performance
comparable to the state of the art. Point cloud is an un-
ordered, permutation-invariant representation of a 3D scene
which makes Transformers a natural choice for this data.

Transformer based architectures have pushed the fron-
tiers of 2D scene understanding in the last few years [, 5].
However, Transformers are data hungry and difficult to op-
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Figure 1. Label efficiency of the pre-trained 3DETR. 3DETR
exhibits improved label efficiency when initialized with weights
obtained from our pre-training. In our method, the encoder is pre-
trained on synthetic shapes from ShapeNet dataset using STRL
framework extended with an auxiliary loss applied to intermediate
Transformer layers.

timize. Large labeled datasets in 2D scene understanding
[4, 14] have enabled the training of Transformers at scale to
achieve superior performance. However, obtaining similar
scale in 3D is prohibitively expensive. Therefore, effective
representations and inductive biases must be learned from
the plethora of unlabeled point cloud data and leveraged in
learning the downstream scene understanding task.

Self-supervised learning has emerged as the leading ap-
proach to obtain generalizable representations and inductive
biases in the feature extractors. Self-supervised pre-training
has successfully supplanted supervised pre-training on Ima-
geNet [8] in 2D scene understanding tasks. It has also found
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Figure 2. Approach Overview. We propose a simple idea of bringing close intermediate layer representations between the online and
target network in the STRL framework. Tx1, Tx2 and Tx3 denotes the first, second and third Transformer layer respectively.

success in pre-training point-cloud architectures [10,23,25].
Depth Contrast [25] significantly improves label efficiency
of VoteNet [16] with PointNet++ [18] pre-trained using
their contrastive learning formulation. This motivates us to
investigate similar approaches for 3DETR with the ultimate
goal of making it less data-hungry.

In this work, we explore Spatio-temporal Self-
Supervised Representation Learning (STRL) [10] for
3DETR. We choose STRL for its simplicity as it uses only-
positive pairs to learn strong representations in a computa-
tionally inexpensive framework. We reveal that the straight-
forward application of STRL to 3DETR does not enable
3DETR to learn strong representations. We remedy it by
extending the STRL framework with an auxiliary loss for
intermediate feature representations. Lastly, we show that
our proposed strategy learns strong representations by eval-
uating it for the 3D object detection task on various limited
data settings, this can be seen in Fig. 1.

2. Method

In Sec. 2.1, first, we introduce key details about 3DETR
and STRL. Then in Sec. 2.2, we describe our extension to
the STRL framework.

2.1. Background
2.1.1 3D Detection Transformer (3DETR)

3DETR consists of an encoder-decoder Transformer archi-
tecture. It takes an unordered set of N points {p‘} as the
input. It is processed by a pre-encoder consisting of set-
aggregation downsampling operation from [18] to extract
per-point feature of dimension d = 256. The resulting
set of N’ point-features N’ x d are fed into the Trans-
former encoder for feature extraction. The Transformer en-

coder consists of 3 layers of multi-head self-attention and
non-linear projections. Afterwards, the transformer decoder
module uses these features and B query embeddings to pro-
duce B 3D bounding boxes. In our work, we focus on
the masked variant of 3DETR encoder’ because it imbues a
local-feature aggregation bias and outperforms the standard
Transformer model.

2.1.2 Spatio-Temporal Self-Supervised Representation
Learning (STRL)

STRL is based on "Bootstrap your own latent” [7] frame-
work. It utilizes two copies of the neural network, referred
to as online and target networks. For different views of the
point cloud, online network is trained to predict the target
network representations. At the same time, target network
is updated as a slow-moving average of the online network.
Different views of the point cloud are obtained by randomly
applying augmentations such as cropping, cutout, transla-
tion and rotations. We discuss further implementation de-
tails in Sec. 3.1.2.

2.2. Auxiliary Loss in STRL

We observe in Fig. 3 that straightforward application of
STRL to 3DETR leads to degraded feature quality. We
hypothesize that this is caused by insufficient 3D-specific
inductive bias in the 3DETR encoder making it harder to
learn 3D representations using self-supervised learning. As
a result, enforcing augmentation invariance at the final rep-
resentations does not produce generalizable features from
the unstructured point cloud data. To this end, we extend

'In this work, we refer to 3DETR-masked encoder simply as 3DETR
encoder for brevity.
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Figure 3. Investigating Pretraining. Linear Evaluation for shape
classification on ModelNet40. STRL+MSE denotes the idea in
[11] implemented in STRL framework.

the STRL framework to include an auxiliary loss that en-
forces augmentation-invariance at intermediate layers. Our
method brings close the representations learned at interme-
diate layers between the online and target network. As illus-
trated in Fig. 2, our approach projects the intermediate rep-
resentations using the shared Projector and Predictor before
applying the regression loss used in STRL. A similar idea
of auxiliary loss at intermediate layers is used in DETR [1]
and 3DETR [15] for the decoder. We hypothesize that the
auxiliary loss introduces a stronger signal at intermediate
layers improving the gradient flow in the network thereby
facilitating the optimization.

Similar to our work, [11] showed that bringing interme-
diate layer representations closer improves MoCo [8] pre-
training on medical datasets. Contrary to our approach, [11]
minimizes the mean squared error between the intermediate
representations without using the Projector and Predictor.
In the Sec. 3.2, we compare their idea in the STRL frame-
work to pre-train 3DETR with our approach.

3. Experiment and Results

In Sec. 3.1, we describe the implementation details of
our experiments along with the datasets used. In Sec. 3.2,
we investigate the features learned from pre-training. In
Sec. 3.3, we present the results of downstream training.

3.1. Experimental Setup
3.1.1 Datasets

ShapeNet. [2] This is a synthetic dataset consisting of
3D CAD models of common objects. Following STRL,
we learn self-supervised representations on the ShapeNet
dataset. We utilize the pre-processed dataset from the offi-
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Figure 4. Visualization of learned features. We visualize the
extracted features for each sample from 10 most frequent classes
in ModelNet40 test set using t-SNE. Pretrained using STRL and
STRL+AuxLoss (Ours). Best viewed in colour.

cial STRL GitHub repository. The version of ShapeNet we
obtained and used consists of 57,448 synthetic objects from
55 categories.

SUN RGB-D. For training in the downstream 3D object
detection task we use SUN RGB-D-v1 dataset [21]. SUN
RGB-D has 5284 RGB-D training samples and 5051 val-
idation samples with oriented bounding box labels for 37
object categories. Following 3DETR, we train and report
the detection performance on 10 most frequent categories.

3.1.2 Implementation Details

Pre-Training. We use the 3DETR encoder as described
in [15]. Pre-Training is done on ShapeNet dataset using the
same augmentations as STRL. We pre-train for 40 epochs
with Adam optimizer [12] and a learning rate of 1e-3. Mo-
mentum of 0.996 for updating the target network param-
eters, and an effective batch size of 32 is used on two
NVIDIA Tesla V100 GPUs. STRL pipeline is used from
the official repository and extended with our auxiliary loss.

Downstream Training. We use the same pipeline from
the 3DETR official repository. Pre-encoder and encoder
weights are initialized from the pre-trained models. The
models are trained for 512 epochs with a batch size of 16 on
one NVIDIA Tesla V100 GPU. All other hyperparameters
are kept as described in [15]. For studying label efficiency,
we used random search to sample the dataset to ensure that
the label distribution of sampled data closely matches the
original label distribution.

Linear Evaluation. For linear evaluation of the pre-
trained models, we max-pool the feature extracted from the
last layer of the transformer in the 3DETR encoder as done
in [15] for evaluating 3DETR encoder on Shape Classifi-
cation. A SVM [9] is trained on top of features extracted
from the frozen encoder on ModelNet40 [24] train split and
evaluated on test split similar to [10].



Initialization ‘ SUN RGB-D

‘ 5% 10% 20% 30% 50% 100%
Scratch ‘ 0.5 1.4 1.1 107 484 58.7
STRL 09 08 11.1 289 413 579

STRL+AuxLoss (Ours) | 11.3 17.8 34.7 40.8 474 585

Table 1. Downstream Evaluation. mAP,s on the full SUN
RGB-D validation set is reported for the model when trained with
varying amount of data.

3.2. Linear Evaluation for Shape Classification

Linear evaluation of the features is a standard method in
assessing the quality of features learned from pre-training.
We perform it as described in Sec. 3.1.2 for the task of shape
classification. Features are evaluated after every two epochs
of pre-training. The Fig. 3 compares our approach against
STRL. We observe that the accuracy deteriorates with pre-
training in the case of STRL. After complete training, our
method achieves an accuracy of 87.6% which is a 21% im-
provement over STRL.

We observe that combining STRL with MSE loss as done
with MoCo in [ 1] also improves over STRL, but converges
to 3% point lower accuracy than our approach as seen in
Fig. 3.

We further investigate the pre-training by visualizing the
learned features with STRL and our method using t-SNE
[22] dimensionality reduction. Fig. 4 displays the embed-
dings of 10 most frequent classes in ModelNet40 test set.
We observe that our method produces more separable em-
beddings than STRL.

3.3. Label Efficiency in 3DETR

We study label efficiency in 3DETR by training it on par-
tial data from the training split of SUN RGB-D dataset and
evaluating the model on the full validation split. Investi-
gation is performed using 5%, 10%, 20%, 30%, 50% and
100% of the training split. We compare the 3DETR model
trained from scratch vs. model initialized with pre-trainined
encoder weights.

Complete results are reported in Tab. 1. Our approach
significantly boosts the performance in 5%, 10%, 20% and
30% data setting with the maximum gain of 23.6 points
over STRL in 20% data setting. However, we observe no
gains when ample training data is available as seen on 50%
and 100% data setting.

4. Feature Similarity Analysis

Quality of features extracted by the encoder is an im-
portant factor to achieve label efficiency. We observe that
the success of our method in linear evaluation of the fea-
tures translates to the downstream 3D object detection task.

SUN RGB-D
Method 5% 10% 20%
| TxI. Tx2. Tx3.| Txl. Tx2. Tx3.|Txl. Tx2. Tx3.

Scratch 056 031 034 049 029 036 | 043 031 035
Ours 071 047 038 | 0.74 050 031 | 078 053 041

Table 2. Investigating feature similarity using CKA. Features of
the models learned with limited annotations are compared to the
features learned by model trained from scratch on 100% of labeled
data. A higher value indicates more feature similarity. Tx1, Tx2
and Tx3 denotes the Transformer layers in the encoder.

To further analyze our method, we compute the similarity
between features learned in the encoder after downstream
training on 5%, 10% and 20% of the labeled data with the
features learned on 100% of the labeled data. We use Cen-
tered Kernal Alignment (CKA) [13] to compute similarity
as it has been shown to be reliable in comparing representa-
tions from neural networks trained with different initializa-
tion.

Tab. 2 reports the CKA values for features extracted from
intermediate layers in the encoder. We observe that the rep-
resentations learned with our method are closer to the ones
learned using 100% labels than the representations learned
on low data from scratch. This indicates the success of our
pre-training approach in boosting learning with limited la-
beled data.

5. Conclusion

We present a simple extension to the STRL framework
which leads to stronger representation learning in 3DETR
architecture. We evaluate the proposed method on a sim-
ulated low-data setting by sampling the SUN RGB-D train
set and find that 3DETR pre-trained with our approach ex-
hibits better label efficiency compared to both STRL and
training from scratch. We take a first step towards making
3DETR less data-hungry by utilizing self-supervised rep-
resentation learning. In the future, we would like to ex-
plore other self-supervised learning methods to learn label-
efficient Transformers for various 3D scene understanding
tasks.
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